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STRESSES IN A BIELASTIC LAYER WITH A SHEAR EDGE CRACK* 

V.E. SADYKHOV 

The distribution of the displacements and stresses in a bielastic layer 
of finite thickness is studied when one monolayer is torn completely by 
a longitudinal shear edge crack perpendicular to the layer boundary, and 
with its tip at the interface of the two media. Arbitrary symmetrically 
distributed stresses are given on the crack edges, the bielastic layer 
surface is free of external loads. There are no displacements and 
stresses within the layer at infinity. The whole structure is 
symmetrical about the plane of the crack and the displacement outside 
the crack in this plane is assumed to be zero. An asymptotic form is 
obtained for the stress field near the crack apex and an expression is 
found for the stress intensity factor kill in terms of an auxiliary 
unknown function for which the nature of the singularity is established 
and an integral equation with extracted singular part is obtained. The 
Keldysh-Sedov method is used to solve the auxiliary boundary value 
problems. 

I. Formulation of the proMem and method of solution. Let two elastic homogeneous iso- 
tropic strips l-f,: O<z<h,, {g I< 00 and &: h,<z<h, -f-h, = I-I, /y j < m consist of 
two, generally different, materials with shear moduli p1 and uLz, respectively, where the 
strip II, is torn completely by a longitudinal shear edge crack y: y = O,S<s <hh,. The 
displacement vector components in the strips n, in the antiplane strain case under con- 
sideration have the form 

w&j) = wJ$) = 0, w,(j) = W (r, y) (j = 1, 2) 

The stress tensor components are given by the formula 

We shall consider symmetrically distributed stresses 

applied to the slit edges y, where the given function al(x) is continuous in the segment 
O,<z<A, and satisfies the Lipschitz condition of arbitrarily small positive order at the 
point x = h, -0. 

Along the c!ommon boundary 5 = h,, 1 y I< 00 , the strips I&, I'I, adhere rigidly 

iv(l) (h, - 0, Y) = IV) @, + 0, Y) (I Y I < co) 

IL1 
~(hl-o,y)=p.~(h,=o,Y) (IYI<'=) 

and the boundary c%I of the bielastic strip II = III u IT, is free from external 
l.e., 

E$_ (_t 0, y) = TV) yg-vf-OO,y)=O (lYl<~) 

By virtue of the existing symmetry about the y = 0 axis, the corresponding 

r~,+:o<x<h,, y>O; G+:h,<x<h, -f-h, = H, Y>O 

loads, 

half-strips 
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can be considered in place of the strips and we can put 

We also assume that the function Wtj)(z, y) are continuous together with the first 
partial derivatives up to the boundaries aIIj+ of the appropriate half-strip n,+ with 

the exception of the tip (h,,O) of the cxack y, where these derivatives can have an in- 
tegrable singularity. The functions w(j) (~,yf together with their first partial derivatives 
vanish (Fig.1) at infinity in the corresponding half-strips. 

To will seek the objective function 

we take account of (1.2) and introduce the auxiliary unknown 
L I 

n Y 
function 

Fig.1 

V(Y)= E&h,--U,Y)=: ; d@) ---&--a,(hr+U*Y) (Y>% w =pr/p* 

which is continuous for O-=ZY<aJ by assumption. In addition we assume that 

'F (Y) = 0 (u;"-"f (Y- 3- =J), s > U 

ZkZEJO,1I, 3y, > 0 : 4, (y) = p-1 (a, + a,y i- -..f + (b, + bl?4 f a*.) 

(0 < Y \< 510) 

In particular, thereby 

rp(Y)==C(1) (Y>YJr ~IMIJdt< 50, SmMOld~<m 
0 0 

Now we have the following boundary value problems for the functions W(j)(x,yf 

Solving these problems we find the objective function o(z) by means of (1.31 and by 
using the identity fl.11 we obtain an integral equation for the auxiliary unknown function 

2. SOtl&iO?3 Of tk ZWMdary YaZLi@ pPObtei3r 0.7) mid 11.81,. Let S (x, y) be some solution 
of Problea (1.7) and Il.8). Then a function T(z,M can be found according to 11.7) such 
that 

i (2) = s (3, Y) i- iT (6 Yf E A VI,+) (z = X -I- Q/I 
. 
i.e., the function f(z) is regular in the domain 
consider the function w (z) = -c~s(nz/h,). 

IT,+ of the complex plane C,. We will 
The domain n‘I,+ of this function is univalent 

and maps conformally into the half-plane Im w>U of the complex plane C,. Using the 
notation F(w)= f@(w)) (Im w>U), we find by virtue of Condition (1.8) and the first of the 
estimates (1.4) 
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By the Keldysh-Sedov method we hence obtain the formula /I./ 

Partitioning the interval of integration into the intervals I--M,-l[, l--l,l[ and 
11, 00 I, using the boundary conditions in (1.81, and integrating in each of the integrals 
obtained by an appropriate change of variable,we arrive at the identity 

after which we find, by integrating with respect to w in the upper half-plane, 

(2.1) 

(2.2) 

where C is an arbitrary constant and any branch regular in the half-plane Im I,> > 0 is 
taken for the logarithms. 

But we find (external normal) from the boundary conditions in (I..71 and the estimates 
(1.8) taking the estimate (1.5) and the condition of continuity of the stress into account 
according to the well-known property of harmonic functions 

Consequently, taking C I-- --In 2/(np1) for convenience and substituting W = U' (2) 
(2.1) and (2.2), we obtain 

from 

(2.3) 

Therefore, if a solution IF(') 6% r/f exists for problem (1.7) and (l-8), then it is 
given by (2.3) and its first partial derivatives are determined from (2.4). On the other 
band, as is seen from these formulas, the function IV') (r, Y) is obviously harmonic in the 
half-strip I&+ and is continuous together with the first partial derivatives up to the 
boundary ?%I,+ of this half-strip everywhere with the exception (for the derivatives) of 
the point (h, - 0, + 0). Passage to the limit in (2.4) to the boundary aII,+ of the half- 
strip IA+ shows that IV') (2, Y) satisfies the boundary conditions in (1.7). Here 

(2.5) 
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The asymptotic formulas 

result from these same relations (2.3) and (2.4). Therefore, with the additional conditions 

h? ju1(l)dt+Ir1~rF(t)df=O, 5 tcp (t) dt = 0 (2.6) 
0 0 0 

and for absolute convergence of the second integral in (2.6) the solution of the boundary 
value Problem (1.7) and (1.8) exists, is unique, and is given by (2.3). 

3. So&%?z of the bou?&~~ VUtU@ ~ObteRi 61.9) and fl.lC.?]. Let s(x,y) be some sol- 
ution of this problem. By virtue of the assumptions made about the continuity of its partial 
derivatives together with the last of the boundary conditions in (1.9), we will have 

g(x,+o)=o (h,<z<fq (3.1) 

Replacing the condition mentioned in (1.9) by (3.11, we solve the boundary value problem 
obtained by the Keldysh-Sedov method /l/. As in Sect.2, we introduce the function 

f (4 = s (2, Y,) i iT (IG, y) E A (I&+) (z = x -k iy) 

za = n (2 - h&/h,, w (z) = cos za, F (w) = f (z (w)) (3.2) 

The function w = Z.Q(Z) is univalent and maps the domain II,+ of the complex plane C, 
conformally into the half-plane Imut>O of the complex plane C,; z = Z(W) is the 
appropriate inverse function. 

Furthermore, we consider the function 

g(w) E WLua - 1); g(w) E A (w g I-l, 11); g(w) - w (w-r- co) (3.3) 

whose existence and uniqueness are obvious /2/. As in Sect.2 we have 

from which 

g (w) F' (w) = o(1) (w-+ 00, Im w > 0) 

(3.4) 

Calculating the value of g(h) in the intervals - 00 <h< - 1 and ~(X(W, the 
value of g(h+ i0) in the interval - 1 <A< 1, using the first two boundary conditions in 
(1.9) and the relationship (3.1) and making the change in the variable of integration h = 
-ch (xl/h,), we obtain 

- cp (0 sh ta w=--&+-- w + ch ta 
d t (Imw>O), t$=-$-- 

0 

Integrating in the upper half-plane between 00 and W, we obtain 

(3.5) 

(3.6) 
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Here the regular branch of the integrand in the half-plane Imw>O is fixed by the 
condition of vanishing at infinity. 

It is seen that the selection of the regular branch S(W) of the analytic function 

{VW'- 1) according to the method mentioned in (3.3) will be 

g (W (z)) = 6 (-0~s z2) == i sin z2 (2 E JI,+) 

According to (3.2), (3.6), and (3.5) 

~(~,y)=_~e~(IL'(:))~12-.12i(1,~)~=~~lli~ expt'-'xp(-iisZ) Iq(l)dl exp (--2) - exp (- iz,) 
" 

Thus, if a solution w(z) (r, Y) exists for the boundary value Problem (1.9) and (l.lO), 
then it is unique, is given by (3.7), and its first partial derivatives are determined from 
the equalities (3.8). On the other hand, this function is obviously harmonic in IJz+ and 
satisfies the conditions of continuity mentioned in Sect.1. Satisfaction of the first two 
boundary conditions in (1.9) is confirmed by passing to the limit to d&+ in identity (3.8). 

Here (Y> 0) 

Using (l-5), (3.7) and (3.8), it is easy to see that the estimate (1.10) also holds. 
Finally, setting zz = JI (Z - h,)/h, in (3.7), we find 

m 

Therefore, under the additional condition that the second of the equalities (2.6) holds, 
the solution of the boundary value Problem (1.9)and (1.10) exists, is unique, and is given 

by (3.7), and its first partial derivatives are determined from the equalities (3.8). We 
hence also obtain from (1.3) an expression of the objective function c(x) in terms of the 
auxiliary unknown functions q(y) 

(:X10) 

4. The integral equation for the auxiliary unknown function. The characteristic index. 
The asymptotic form of the objective function. Concluding remarks. Differentiating the 

identity (1.1) and using (2.5) and (3.9), we obtain the following integral equation for the 
function (p(y) 

(4.1) 

under the additional constraints (2.6). The mathematical meaning of these constraints is 
noted above for each of the auxiliary boundary value problems. The mechanical meaning is 
naturally formulated in terms of the whole bielectric strip II = II, U I&. From (2.6) and 
(3.10) we have 

h, 

s (- CT1 (x)) ax + ‘s 0 (x) ax = 0 
0 )II 
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In combination with the boundary conditions in (1.7) and (1.9), that do not contain 
q(Y), and the conditions at infinity (1.8) and (l.lO), this yields 

s ZdLO, W= 

al+ 

In other words the bielastic half-strip n+ = l-II,+ U Hz+ and also the half-strip n- 
by symmetry, are self-equilibrated systems. 

Analogously, we deduce from (2.6) and (3.7) 

s WC’) (I, &- 0) dx = 0 
0 

i.e., the crack y in the bielastic strip n does not experience displacement as a whole. 
Taking account of the last boundary condition in (1.91, we can assert the very same about the 
plane of symmetry of the whole system II. 

Now, from the prescribed general form of the asymptotic form (1.5) of the function cp(y) 
as ?/++or we find the characteristic index a and the conditions on the coefficients 

a,, bO, al by using relations (4.1) and (2.6). Let us use the notation (D(y), y(y), n(y) for 
the components with integrals in (4.1) in order of their succession. Applying the elementary 
method of asymptotic estimates of the definite integrals /3, 4/, we obtain 

CJ (Y) = - a0 (ctg 7) ya-l + ($ + a, tg9) ya + 0 (yv) 

~Y(y)=ao(tg~)ya-l+~boln$+C(ho,~)+ 

( z,- a,ctg F)y" + O(yv) (y+ + O), y = + 

with the constant C(h,,cp), dependent on h, in terms of the function q(y). Imposing the 
additional condition of differentiability at the point x =h, -0 on the function 01 (x) t 

we will have 

II (Y) = a, (W + 0 (Y In Y) = 81 (W + 0 (yv) (Y * + 0) 

Finally, we find directly from expansion (1.5) 

Substituting these expressions into the identity (4.11, we arrive at the relationships 

a0 (- ctg? + o tg+= 0, b, = 0 

C(h,,cp)=-$o,(h,), a,(tgT--wctgF)=O 
(4.2) 

On the other hand, we obtain from (3.10) by the same procedures of elementary asymptotic 
estimates 

u (x) = K, (x - h$‘-’ - K, + K, (x - h,)= + 0 ((5 - h#) 

(x -+ h, + 0) 
(4.3) 

K, = -p,a,lcos ‘I, na, K, = plC (h,, cp), K, = -pla,lsin 'l,na 

It is well-known that for p, = pLz, i.e., for a = 'I,, the stress intensity factor 

k ,~;st= 1/z& is different from zero in the case of a uniformly distributed load a,(x) = 7 = 
. The integral Eq.(4.1) depends continuously on 

it can be assumed that a,= 0 
Ul (2) and o = p,/p8. Consequently, 

generally. In this case and under the condition 
will have from (4.2) and (4.3) (~Ll#pg) 

a>0 we 

a = 2n-' arctg I/'/0(0 = pi/pa), 'p (y) = a,ya-l + 0 (y@+W) (y + + 0) 

u (x) = -_(pla,/cos V,na) (x - h,)“l - u1 (U/o + 0 ((x - hp+lq 

(x + h, - 0) 
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For ~L1 = FLz the estimates of the residual terms are worsened: 
be 'ia. 

the appropriate index will 

Thus, the stress intensity factor kIIr=-~~~a,/cos'l,na is 

K 

H 

expressed explicitly in terms of the coefficient a, of the expansion 
(1.5), because the characteristic index (L is now known. In its 
turn the quantity can be found for a specific set of parameters 
by using a numerica?solution of (4.1) under the Condition (2.6). 

2 Specific difficulties occur only for h,>hh, and especially for 
W=9 h, <h,. In these situations approximate formulas for kIII 

would be useful. 
Some results of a numerical computation are shown in Fig.2 where 

I 1 u1 (x) = a = const, K = kllrll/2nh~-a 7, h = h,lh,. The mean of these 
curves agrees with less than 1% error with the graph of the dependence 

113 for a homogeneous medium /6/. 

R Note that the characteristic indexa turns out to be independent 

0 I 2 of either the monolayer thicknesses h,,h, or of the specific form 
of the continuous load (T1 (x). It is identical here with the 

Fig.2 appropriate quantity obtained earlier /7/ in the homogeneous problem 
with h, = h, = 00. It should just be emphasized that this agreement 
is essentially related to the assumption of the boundedness of the 

stress on the crack near its tip. 
The problem of an edge crack in a bielastic strip (or equivalently of a central crack 

in a symmetric trielastic strip) was examined in /a-11/. Plane strain was studied in /9/. 
It was assumed in /8, lO/ thatthe tips of the central longitudinal shear crack are located 
strictly within a homogeneous medium so that the characteristic index CL Ii '2 (here h, CQ). 
The results obtained in this paper were partially presented in the note /ll/. 
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